A bound on the maximum strong order of

نویسندگان

  • K. Burrage
  • P. M. Burrage
چکیده

In Burrage and Burrage (1996) it was shown that by introducing a very general formulation for stochastic Runge-Kutta methods, the previous strong order barrier of order one could be broken without having to use higher derivative terms. In particular, methods of strong order 1.5 were developed in which a Stratonovich integral of order one and one of order two were present in the formulation. In this present paper, general order results are proven about the maximum attainable strong order of these stochastic Runge-Kutta methods (SRKs) in terms of the order of the Stratonovich integrals appearing in the Runge-Kutta formulation. In particular, it will be shown that if an s-stage SRK contains Stratonovich integrals up to order p then the strong order of the SRK cannot exceed minf(p + 1)=2; (s ? 1)=2g; p 2; s 3 or 1 if p = 1:

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Single Machine Sequencing Problem with Idle Insert: Simulated Annealing and Branch-and-Bound Methods

  In this paper, a single machine sequencing problem is considered in order to find the sequence of jobs minimizing the sum of the maximum earliness and tardiness with idle times (n/1/I/ETmax). Due to the time complexity function, this sequencing problem belongs to a class of NP-hard ones. Thus, a special design of a simulated annealing (SA) method is applied to solve such a hard problem. To co...

متن کامل

Maximum Allowable Dynamic Load of Flexible 2-Link Mobile Manipulators Using Finite Element Approach

In this paper a general formulation for finding the maximum allowable dynamic load (MADL) of flexible link mobile manipulators is presented. The main constraints used for the algorithm presented are the actuator torque capacity and the limited error bound for the end-effector during motion on the given trajectory. The precision constraint is taken into account with two boundary lines in plane w...

متن کامل

The second geometric-arithmetic index for trees and unicyclic graphs

Let $G$ be a finite and simple graph with edge set $E(G)$. The second geometric-arithmetic index is defined as $GA_2(G)=sum_{uvin E(G)}frac{2sqrt{n_un_v}}{n_u+n_v}$, where $n_u$ denotes the number of vertices in $G$ lying closer to $u$ than to $v$. In this paper we find a sharp upper bound for $GA_2(T)$, where $T$ is tree, in terms of the order and maximum degree o...

متن کامل

بهبود کران بالا روی بعد همدیس میدان‌های اولیه

Modular invarinat, constraints the spectrum of the theory. Using the medum temprature expansion, for first and third order of derivative, a universal upper bound on the lowest primary field has been obtained in recent researches.  In this paper, we will improve the upper bound on the scaling dimension of the lowest primary field. We use by the medium temprature expansion for an arbitrary orders...

متن کامل

Fractional order Adaptive Terminal Sliding Mode Controller Design for MPPT in a Solar Cell under Normal and Partial Shading Condition

In this paper, by combining fractional calculus and sliding mode control theory, a new fractional order adaptive terminal sliding mode controller is proposed for the maximum power point tracking in a solar cell. To find the maximum power point, the incremental conductance method has been used. First, a fractional order terminal sliding mode controller is designed in which the control law depend...

متن کامل

On strongly 2-multiplicative graphs

In this paper we obtain an upper bound and also a lower bound for maximum edges of strongly 2 multiplicative graphs of order n. Also we prove that triangular ladder the graph obtained by duplication of an arbitrary edge by a new vertex in path and the graphobtained by duplicating all vertices by new edges in a path and some other graphs are strongly 2 multiplicative

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997